AXIe: AdvancedTCA® Extensions for Instrumentation and Test

July 1, 2010

Agilent Technologies

AXIe Specifications: What and Why

What is it?

 A family of next-generation, open specifications that extends Advanced Telecom Computing Architecture (AdvancedTCA[®]) for general purpose and semiconductor test

Why another modular test standard?

- Higher performance per rack inch
- Greater scalability
- Integrates easily with PXI, LXI and IVI
- More modularity, more flexibility, higher speeds => addresses a range of platforms
 - ATE Systems, rack-and-stack modular, bench top, module plug-ins
- Significant reduction of development and unit costs

Why AdvancedTCA as a foundation?

- AdvancedTCA PICMG[®] 3.0 Specification: proven open system architecture
- Large board size
 - Ideal for high performance instrumentation
 - Board size matches that of planar instrument design
- Rack space efficiency
 - Horizontal and vertical configurations
- Scalability
 - 1 slot to 16 slots, 1 Chassis to many, PXI/PCI adapters
- Ideal for high power applications
 - Single rail power management and robust cooling
- Virtual LXI and PXI
 - Base fabric support of LAN, data fabric support of PCIe
- Robust system management
 - Intelligent Platform Management Interface (IPMI) enables both single chassis and multi-chassis system control functions
- Extensions for I/O, custom backplanes, liquid cooling

AXIe Specification Structure

AXIe is a scalable family of specifications allowing a portfolio of applications.

Zone 3

Semiconductor Test AXIe 3.1

- Zone 3 signals
- DUT I/O on RTM
- Add'l Trigger/Sync
- Analog Busses
- FRU & RTM
 Management

Other future

Apps AXIe 3.N

- Examples:
 - Network Test
 - Physics
 - Liquid Cooling
 - Custom

- AXIe 3.N specifications define Zone 3 capabilities for specific markets
- Can define specific additional system management and system resources.
- May work on top of a standard ATCA topologies or AXIe 1.0

Zone 1+2 Topology

ATCA

•ATCA topologies of stars, meshes and slot numbers

AXIe 1.0

- •ATCA + Core Triggers, Timing and Local bus
- •AdvancedTCA PICMG3.0, PICMG3.4
- LAN + PCle
- System Management

- AXIe expands on the spectrum of allowable ATCA Zone 1 and 2 topologies to include AXIe 1.0, allowing embedded data transfer and synchronization enhancements
- ATCA is the base specification for all AXIe specifications

AXIe 1.0 and 3.1 Features

Feature	1.0	3.1
PCIe & LAN Hubs	X	
Local Bus	X	
Trigger Bus (TRIG)	X	
Frequency Reference (CLK100) & Sync (SYNC)	X	
Star Trigger (STRIG)	X	
Bidirectional DSTAR (4)		X
User Defined Synchronization Signals		X
Load Board Support		X
Field Calibration Support		X

AXIe leverages ATCA

AXIe

AdvancedTCA

- AdvancedTCA specific extensions
- IPMI and resource management
- Timing and Sync
- Zone 3 configurations

...draws from and works with existing instrument standards

PXI

- Virtual PXIe instruments
- PCle communication

IVI

- Standard drivers work in all Application Development Environments
- VISA specifications

LXI

- Virtual LXI instruments
- LAN communication

High scalability of AXIe

14 slot Vertical

Specialty instrument with AXIe module

PXI carrier module

AXIe integration with Rack and Stack

Module size comparisons

AXIe integration in Semiconductor Test

- Scalable combinations of ATCA, AXIe and PXI chassis
- Zone 3 Extensions for digital synchronization DUT I/O, and other ATE system resources

Note: Graphic for example only.

Summary

- Extending AdvancedTCA
 - AXIe is based on AdvancedTCA with extensions for instrumentation and test.
- General Purpose (1.0) & Semiconductor Test (3.1)
 - AXIe will have a base architecture specification of AXIe 1.0 for general instrumentation, and a Zone 3 specification AXIe 3.1 for semiconductor test.
- More Performance, Scalability, Flexibility
 - AXIe delivers higher performance in a flexible, scalable platform.
- PXI, LXI, IVI
 - AXIe works well with other standards, such as PXI, LXI and IVI.
- Lower costs
 - Enables significant reduction of development and unit costs.
- Longevity
 - Promises longevity due to high performance coupled with layered specifications

Specification Management

AXIe Consortium

- AXIe Consortium manages AXIe 1.0 and 3.1 specifications
- For more information, go to <u>www.axiestandard.org</u> or email Bob Helsel,
 Executive Director at <u>execdir@axiestandard.org</u>

Potential future AXIe standard efforts

- Improved integration of ATCA, AXIe 1.0, and AXIe 3.1 combinations
- AXIe 2.0 software specification
- AXIe 3.N specifications for additional markets
- Fully integrated PXImc
- MicroTCA[®] derivatives for AXIe

Technical Overview Slides

- AdvancedTCA
- AXIe 1.0
- AXIe 3.1

Technical Overview Slides

AdvancedTCA

- AXIe 1.0
- AXIe 3.1

Advanced Telecom

Computing Architecture

PICMG 3.0 AdvancedTCA Specification

- AdvancedTCA (Advanced Telecom Computing Architecture)
- Larger form factor cards
- Flexible power (48V) and air cooled design
- PICMG 3.4 Specification for PCIe signaling on Zone 2 Fabric
- Intelligent Platform Management Interface (IPMI)

AdvancedTCA Shelf (Chassis)

- 2-16 Slot Shelf
 - 2-14 Slots in 19" Rack
- 2 Hub Slots
- 14 Node Slots
- User Zone 3 Backplane

AdvancedTCA Front Boards (Modules)

- 322mm x 280mm
- >200W Power Dissipation
- 1.2 in card spacing

AdvancedTCA Backplanes

Zone 2

- Serial Fabric and Base Channels
 - Dual Star to Hub Slots
- Reference Clocks
- Update Channel Links

Zone 1

- Power
- Geographical Address
- Telecom Analog Buses

AdvancedTCA Connector summary

- ZONE 3: Rear Transition
 Module is an
 AdvancedTCA option
 traditionally used for I/O
- PICMG allows each slot connector to be customized
- ZONE 2: Serial fabric and reference clocks. Allows 4 lanes of PCIe
- Typical configuration is a dual star
- ZONE 1: Power and Management

Technical Overview Slides

- AdvancedTCA
- AXIe 1.0
- AXIe 3.1

AXIe Base Architecture Specification

AXIe 1.0 Chassis

- Logical Slot 1 (Hub 1 slot) is the AXIe System Slot
- Logical Slots 2-14 (Hub 2 and Node slots) are AXIe
 Instrument Slots
- Logical Slot 2 (Hub 2 slot) is also the AXIe Instrument Hub Slot
 - Fabric Channel 2 open for proprietary or future definition
- Up to 13 instrument modules in a 14 slot chassis
- Zone 3 reserved for AXIe defined extensions

AXIe 1.0 Communication and Timing

- LAN and/or PCIe connectivity to host computer
 - LAN distributed over Base Fabric
 - PCle distributed over Data Fabric
 - PCle reference clock distributed over FCLK star
- AXIe Core GP Timing and Triggering
 - Star CLK100 (100Mhz), Star SYNC
 - Matched length
 - Star STRIG Matched Length
 - Trigger Bus (12 MLVDS pairs)
 - Local Bus (18 to 62 LVDS pairs from slot n to slot n+1)

AXIe 1.0 Leverages AdvancedTCA Specifications

- PICMG 3.0 AdvancedTCA Specification
- Mechanical, Power, and Intelligent Platform Management Interface (IPMI)
- Base Interface: Gigabit Ethernet LAN
- PICMG 3.4 Specification for PCIe signaling on Zone 2 Fabric

...but adds

- High speed segmented local bus between adjacent slots
 - Utilizes unused transport fabric and base channel pins for AXIe Local Bus
 - 18 high speed differential pairs per link minimum, up to 62
- Timing and Triggering
 - Synchronous and asynchronous timing and trigger lines
 - Fabric clock for PCIe reference clock distribution
 - Utilizes ATCA telecom-defined clock and Update Channel pins

Result: Powerful general purpose instrument architecture that does not impact or use Zone 3, allowing compatibility with current AdvancedTCA products and any AXIe extensions that use a defined Zone 3.

AXIe 1.0 Connector Summary

- RTM connectors and space reserved for AXIe extensions
- Utilize Dual Star fabric:
 - FC1 for PCle
 - FC2 proprietary
- Eliminate slots 15 and 16
- Utilize Unused base and fabric pins for Local Bus
- Utilize Update Channel pins for Timing Interface and Trigger Bus

AXIe 1.0 Backplane Layout (14-slot Example)

Timing Interface: Clocks and star triggers

Trigger Bus: Parallel triggers

Local Bus: 18, 42 or 62 pairs

PCle Data Fabric: x4 link to each slot (Second star data vendor-defined).

1Gb Ethernet LAN

IPMB: Intelligent Platform Management Bus used for chassis system control functions

Power Rail: (-48V)

Instrument Slots
System Slot

Note: System Module may be built into the chassis Note: Graphic shows 14 slots as example only

AXIe 1.0 System Module

- Resides in Logical Slot 1
- Sources CLK100, SYNC, and FCLK
- Routes Star Trigger (STRIG) to Instrument Modules
- Connects to Trigger Bus
- Routes signals between TRIG, STRIG, SYNC, and external trigger connections
- Switch/Hub for LAN and PCIe

AXIe 1.0 Zone 2 Backplane Block Diagram

System Slot

AXIe 1.0 Timing Interface Topology

AXIe 1.0 Local Bus Topology

Technical Overview Slides

- AdvancedTCA
- AXIe 1.0
- AXIe 3.1

AXIe Semiconductor Test Extension

AXIe 3.1 Vision

- Create instruments, sub-systems and systems in open standard formats for semiconductor test applications
- Support both bench top Characterization and Production Automatic Test
- Standard Chassis for
 - High Speed Digital Pins
 - DC & Power Instrumentation
 - High Channel Count Instrumentation (i.e. multi-site)

AXIe 3.1 Chassis

- Defined Zone 3 Backplane
 - DUT (Device Under Test) I/O in RTM
- Layered on top of ATCA or AXIe 1.0 Zone 1 and 2 backplane
- Enhanced System Module
- Up to 15 instruments in 16 slot chassis

AXIe 3.1 Extensions

- Timing and Triggering Extension
 - Star Triggers
 - User-Defined Synchronization
- Load Board Support
 - DUT I/O via Rear Transition Modules
 - Load Board Configuration Management
 - Power
- Field Calibration Path
 - 4 Wire Kelvin Interface Bus
 - 1 Amp, 300 Volt Max

AXIe 3.1 Triggers

Asynchronous Triggering

- 4 Star Triggers from System Module to each Instrument node
- Bi-directional Differential Terminated BLVDS
- Matched Length
- 5ns Min Pulse width

Custom Synchronization: UserSync

- 5 star-distributed signals from System Module to each Instrument node
- Bi-directional Differential Terminated BLVDS, matched length
- For system-defined instrument synchronization protocols

AXIe 3.1 Triggering: Up To 16 Slot Cage

AXIe 3.1 Triggering Applications

Asynchronous

- Instrument<->Instrument triggering for action<->status operation
- Encoded triggers to convey information between instruments
- One-to-many triggering for multi-site testing
- Multi-chassis trigger support

UserSync Bus

- Providing specialized or tightly-timed synchronous triggers
- Providing matched length, specialized clocks to instruments
- Synchronizing digital and mixed-signal pins
- Synchronizing multi-board instruments

AXIe 3.1 Backplane Layout

AXIe 3.1 System Module Slot

- Enhanced System Module Board (i.e. 3.1 SM)
- 32 DUT I/O signals
- Analog and Calibration Bus Support
- Power (+/-15, +/- 5, 48) to DUT Load Board
- I2C Bus for Load Board/Extender Card ID
- I2C Bus to control Load Board/Extender card electronics
- Hub for Point to Point Triggers to node slots
- Hub for Point to Point User-Defined Synchronization bus

AXIe 3.1 Node Slot

- 152 DUT I/O signals
- Support for active electronics in DUT signal path
 - I2C Bus for FRU information
 - I2C Bus for register access
 - Power (+ 5V)
- Four Point to Point Triggers from System Module Slot
- Five-Signal Point to Point User-Defined Synchronization Signals
- Access to Analog and Calibration Busses

Further Information

 Specifications may be downloaded from the AXIe Consortium website at <u>www.axiestandard.org</u>

