# AXIe: AdvancedTCA® Extensions for Instrumentation and Test

#### **AXIe for Physics**

ADLINK Technology, Inc.
Aeroflex Corporation
Agilent Technologies, Inc.
Giga-tronics Incorporated
Guzik Technical Enterprises
Test Evolution Corporation



## AXIe Standard: What and Why

- What is it?
  - A next-generation, open standard that extends Advanced Telecom Computing Architecture (AdvancedTCA®) for general purpose and semiconductor test
- Why another modular test standard?
  - Higher performance per rack inch
  - Greater scalability
  - Integrates easily with PXI<sup>®</sup>, LXI<sup>®</sup> and IVI<sup>®</sup>
  - More modularity, more flexibility, higher speeds => addresses a range of platforms
    - ATE Systems, rack-and-stack modular, bench top, module plug-ins
  - Significant reduction of development and unit costs



## Why AdvancedTCA as a Foundation?

- AdvancedTCA PICMG® 3.0 Standard
  - Proven open system architecture
- Large board size
  - Ideal for high performance instrumentation
  - Board size matches that of planar instrument design
- Rack space efficiency
  - Horizontal and vertical configurations
- Scalability
  - 1 slot to 14 slots, 1 Chassis to many, PXI/PCI adapters
- Ideal for high power applications
  - Single rail power management and robust cooling
- Virtual I XI and PXI
  - Base fabric support of LAN and PCIe data fabric support
- Robust system management
  - Intelligent Platform Management Interface (IPMI) enables both single chassis and multichassis system control functions
- Extensions
  - For I/O, custom backplanes, liquid cooling



#### **AXIe Standard Structure**

AXIe is a scalable standard allowing a portfolio of applications, all of which can leverage general purpose

instrumentation.

Extensions built for specific applications

- Accepts all AXIe 1.0 modules
- Can define specific Zone 3 and additional System Management and system resources.
- Frugal use of AdvancedTCA resources
- Zone 3 unused to allow compatibility with extended uses and existing AdvancedTCA modules
- Allows carrier boards
- Core system management

#### Semiconductor

#### Test AXIe 1.1

- Zone 3 signals
- DUT I/O on RTM
- Add'l Trigger/Sync
- Analog Busses
- FRU & RTM Management

## Other future Applications

- Examples:
  - Network Test
  - Physics
  - Liquid Cooling
  - Custom

#### AXIe 1.n

..

#### **General Purpose**

- Zone 1 & 2
- Core Triggers, Timing and Local bus
  - AdvancedTCA PICMG3.0, PICMG3.4
  - LAN + PCle
  - System Management

AXIe 1.0

AdvancedTCA

AXI 1.0 and AXI 1.n refer to standards, not revision numbers Revisions handled as Revision X.Y



## Requirements of Physics Applications

#### ..and how AXIe meets the needs

#### Range of Modules

- Wide variety of COTS (Commercial Off The Shelf) modules will become available
- Open system allows custom module development

#### Performance density

- Board footprints provide space for high performance signal conditioning and sensing
- High power/cooling capacity for high-performance analog and digital subsystems

#### Multi-module synchronization

- AXIe trigger buses
- AXIe Star trigger, sync, and clock resources.
- AXIe Local Bus for high speed module to module communication

#### Processing power

- AXIe form factor suitable for high-performance computer and signal processing modules.
- High power/cooling capacity for high-performance digital subsystems.
- PCIe fabric provides high-bandwidth IO to/from processors.
- Cabled PCIe provides link to external high-performance processors.



## Requirements of Physics Applications

- Incorporation of custom modules
  - Open, modular system easily accommodates custom module development.
  - Large existing AdvancedTCA ecosystem of basic infrastructure components.
- High throughput data transfers
  - LAN and x4 PCIe for primary control and data transfer.
  - Hub 2 star for custom subsystem communications.
  - AXIe local bus for high-speed streaming between adjacent modules.
- Reliability
  - Mature AdvancedTCA infrastructure developed for high availability applications
  - COTS modules and mainframes developed to traditional T&M quality standards.
- Scalability
  - Modular structure
  - Variety of mainframe configurations
  - Easy migration from PXI
- Cost per channel and TCO
  - Wide selection of COTS components
  - Provides up-scaled solutions from smaller PXI systems.



## Why AXIe for Multichannel Applications?

- Multichannel Performance
  - Performance Density
    - Power, board area and cooling for channel density and powerful processing
  - Cross-module synchronization
    - Timing
    - Star trigger
    - Local Bus
- System up-time
  - AdvancedTCA infrastructure designed for telecom uptime, optional for AXIe
    - Optional backup power for chassis
    - Optional backup cooling for chassis
    - Hot-swap capability optional for AXIe modules and chassis



## AXIe compatibility With AdvancedTCA

- Full zone 1 compatibility
  - Power distribution
  - System management
- Zone 2 base and fabric compatibility
  - Dual-star topology
- AdvancedTCA redundancy features are optional in AXIe
- AdvancedTCA zone 2 clock and update channels become the AXIe general purpose bussed timing.
- By limiting chassis to 14 slots (maximum in a 19" EIA cabinet), pins are freed for advanced timing without backwards compatibility effects for current AdvancedTCA products.



## Retask AdvancedTCA P20 pins from slot 15 and 16 support to AXIe 1.0 Timing Generation and Local Bus

- AdvancedTCA Slots 15 and 16 are unused in 19" EIA racks (P20 slot 15/16 pins shown below)
- AXIe Timing Bus (ATB) retasks these pins for 100 MHz and star-distributed equal length traces
  - CLOCK, SYNC, and bi-directional STRIG distributed on ATB16-14 to nodes
  - ATB1~13 available for general purpose bussed timing

Local Bus (LBn) for > 1GHz adjacent node datacomm

| Row | P20 connector pairs |        |        |        |        |        |        |        |
|-----|---------------------|--------|--------|--------|--------|--------|--------|--------|
|     | ab                  |        | cd     |        | ef     |        | gh     |        |
| 1   | ATB1+               | ATB1-  | ATB2+  | ATB2-  | ATB3+  | ATB3-  | ATB4+  | ATB4-  |
| 2   | ATB5+               | ATB5-  | ATB6+  | ATB6-  | ATB7+  | ATB7-  | ATB8+  | ATB8-  |
| 3   | ATB9+               | ATB9-  | ATB10+ | ATB10- | ATB11+ | ATB11- | ATB12+ | ATB12- |
| 4   | ATB13+              | ATB13- | ATB14+ | ATB14- | ATB15+ | ATB15- | ATB16+ | ATB16- |
| 5   | LBL1+               | LBL1-  | LBL2+  | LBL2-  | LBR1+  | LBR1-  | LBR2+  | LBR2-  |
| 6   | LBL3+               | LBL3-  | LBL4+  | LBL4-  | LBR3+  | LBR3-  | LBR4+  | LBR4-  |
| 7   | LBL5+               | LBL5-  | LBL6+  | LBL6-  | LBR5+  | LBR5-  | LBR6+  | LBR6-  |
| 8   | LBL7+               | LBL7-  | LBL8+  | LBL8-  | LBR7+  | LBR7-  | LBR8+  | LBR8-  |





## AXIe 1.0 Backplane Block Diagram

- CLOCK, SYNC, and STRIG are "star"-ed with equal-length traces from the SM to Node slot
- STRIG is bi-directional and not buffered





## **AXIe 1.0 Backplane Layout**



ToomHz CLOCK, 1 pair point-to-point SYNC, 1 pair point-to-point STRIG, 1 pair bi-directional point-to-point Triggers, 13 pairs MLVDS

Local Bus, 8 pairs

Transport Fabric: two stars Ch 1 star (8 pairs) x4 PCIe. Ch 2 star (8 pairs) optional AdvancedTCA FC2

Base Interface Dual Ethernet Star

The Hub 2 slot can optionally be used as second 1Gb Base Interface Ethernet Star

Note: System Module may be built into the chassis Note: Graphic shows 14 slots as example only



#### AXIe leverages AdvancedTCA

#### **AXI**e

- AdvancedTCA specific extensions
- IPMI and resource management
- Timing and Sync
- Zone 3 configurations

#### **AdvancedTCA**

## ...draws from and works with existing instrument standards

PXI

IVI

LXI

- Virtual PXIe instruments
- PCle communication

- Standard drivers work in all Application Development Environments
- VISA standard

- Virtual LXI instruments
- LAN communication



## High scalability of AXIe

14 slot Vertical



n U Horizontal



1U \_\_\_\_\_\_



Specialty instrument with AXIe module



PXI carrier module



## AXIe integration with Rack and Stack



# AXIe is the next logical step in modular instrumentation for physics AXIe



**CAMAC** 

1970-90

AXIe

## Summary

- Extending AdvancedTCA
  - AXIe is based on AdvancedTCA with extensions for instrumentation and test.
     AXIe uses clever techniques to add powerful timing features while maximizing AdvancedTCA backwards compatibility.
- More Performance, Scalability, Flexibility
  - AXIe delivers high performance and density in a flexible, scalable platform.
- Ideal for customized modules
  - AXIe offers the power, cooling and board area for custom designs, while allowing users to leverage standard infrastructure components.
- PXI, LXI, IVI
  - AXIe works well with other standards, such as PXI, LXI and IVI.
- Longevity
  - Promises longevity due to high performance coupled with layered standards

